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Abstract. We introduce Mechanic Miner, an evolutionary system for
discovering simple two-state game mechanics for puzzle platform games.
We demonstrate how a reflection-driven generation technique can use a
simulation of gameplay to select good mechanics, and how the simulation-
driven process can be inverted to produce challenging levels specific to a
generated mechanic. We give examples of levels and mechanics generated
by the system, summarise a small pilot study conducted with example
levels and mechanics, and point to further applications of the technique,
including applications to automated game design.
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1 Introduction

Procedural content generation (PCG) is a highly active area of research, both in
academia and game development. The ability to generate high-quality content
on-demand and in large volumes not only can improve a game’s quality, but has
made possible new types of game dependent on their ability to generate content
in this way - such as Betts’ In Ruins or Smith’s Endless Web [1]. However, much
PCG focuses on the generation of consumable data, such as terrain, quests, items
or narrative. In order to explore the concept of fully-automated game design, we
must find techniques for generating all aspects of a game, including higher-level
concepts that describe how game systems interact with one another; and in
particular how they interact with the player.

Game mechanics are an important type of player-game interactions; they
range from the well-known (such as jumping in a platform game) to the experi-
mental (such as in [2], where the player’s movement was controlled by shouting
loudly or softly into a microphone). Novel mechanics are still a major source of
interest in the independent development community, with many events focusing
on mechanics! and many awards rewarding innovative design®. One approach to
generating game mechanics is to compose them out of smaller rules or concepts
defined by hand. However, doing this explores a restricted search space, and lim-
its the system’s potential for novelty or surprise. Reducing the use of predefined
rules or domain knowledge may help mitigate this.

! e.g. the Experimental Gameplay Project (http://experimentalgameplay.com/)
2 e.g. the Independent Games Festival’s Nuovo Award.
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We introduce here Mechanic Miner, an evolutionary system designed to gen-
erate simple game mechanics, and then design levels that specifically require the
use of those mechanics in their solution. We show how the reflective properties of
a programming language can be used to generate mechanics programmatically
without metalevel domain knowledge, and demonstrate a simulation-driven ap-
proach to evaluating mechanics for utility. We then show how, by inverting the
evolutionary system, we can use the same process and principles to design levels
for specific mechanics, with control over features like difficulty and complexity.

The rest of the paper is organised as follows: in section 2 we describe the
process of evolving game mechanics through simulation; in section 3 we show
how this process can be reversed to design levels that use certain mechanics; in
section 4 we give examples of generated content and describe a small pilot study;
in section 5 we review related work to this project and distinguish our approach
and in section 6 we conclude and describe some directions for future work.

2 Automatic Generation of Game Mechanics

2.1 Background

Reflection Reflection is the ability of a programming language to inspect itself
at runtime, allowing for the runtime creation of new classes, the modification of
code, and the inspection, invocation and alteration of fields and methods. The
following code retrieves a list of objects describing the fields of an object o:

Class<?> c = o.getClass(); List<Field> fs = c.getFields();

Mechanic Miner is further extended by the open source Reflections library® in
order to overcome the limitations of Java’s standard reflection.

Toggleable Game Mechanics In the remainder of this paper we refer to
toggleable game mechanics (TGM), an intentionally simplified subspace of game
mechanics that we identify for the purposes of demonstrating Mechanic Miner.
A TGM is an action the player can take to change the state of a variable. That
is, given a field foo and a modification function m with inverse m=!, a TGM is
an action the player can take which applies m(foo) when pressed the first time,
and m~1(foo) when pressed a second time. The action may not be perfectly
reversible; if foo is changed elsewhere in the code between the player taking
actions m and m~!, the inverse may not set foo back to the value it had when
m was applied to it. For instance, if foo is the player’s x co-ordinate, the and the
player moves around after applying m, then their x co-ordinate will not return to
its original value after applying m—1, as it was modified by the player moving.

Flixel and Flixel-Android Flixel* is a popular open-source game library built
on top of Actionscript 3. Flixel-Android® is a port of the Flixel library to the

3 http://code.google.com/p/reflections/
4 http://www flixel.org
% http://code.google.com/p/flixel-android/
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LibGDX framework. It follows the same structure and has the same method calls
(with some concessions made for differences in programming language capabili-
ties). LibGDX® is a Java library that compiles to many platforms.

2.2 Mechanic Miner

Mechanic Miner is an evolutionary system for searching a codebase for usable
TGMs. The codebase is defined as any code in the game being analysed — for our
experiments, this means both the Flixel-Android library code, and the code of a
simple platform game written using the library. We define a usable mechanic as
one which enables the player to overcome some obstacle in order to complete a
task, such as reaching an exit. Figure 1 shows a sample level where the player’s
progress to the exit, marked ’X’, is blocked by a tower of impassable blocks.
The player starts in the square marked ’S’; falls to the ground under gravity,
and is unable to jump over the tower. A usable TGM is any TGM that allows
them to reach the exit from this starting configuration. One example would be
a mechanic that toggled gravity off, allowing the player to jump as high as they
wanted temporarily, and thereby leap over the tower in the centre.

Fig. 1. A sample puzzle level. The player starts at the ‘S’ mark, and must reach the
‘X’ mark. Black squares are solid, and gravity acts on the player pulling them down.

Population Generation via Codebase Inspection In section 2.1, we defined
a TGM as a combination of a game variable and a function that modifies it. In
Mechanic Miner, we formalise this by describing a mechanic as being comprised
of two parts: a java.lang.Field object that refers to a field present either
in the game library’s code or the code of the template game; and a Modifier
that encapsulates an operation on a field to change it. In order to generate such
mechanics, we use reflection to search through all the classes defined in the Flixel-
Android library and the template game. We choose fields at random, and based
on their type we randomly select a modifier to use. The two together comprise
a TGM. Modifiers are type-specific because the range of operations that can be
performed on a field are restricted by the type system. For numerical types like

5 https://github.com/libgdx/libgdx
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float or integer, we offer modifiers that double or halve the value, or multiply
it by -1. For boolean fields, we invert the sign of the boolean. The set of modifiers
we use is limited for this work to simplify the system.

Fitness Evaluation via Simulation We evaluate the fitness of a mechanic
during evolution by simulating its use in the sample level, testing its usability,
and calculate its score based on the area the player gains access to. The process
of simulation is intended to find all valid sequences of actions under a certain
length, using a breadth first search. An action is a set of steps that the simulated
character performs until it can no longer reach any new space. For instance, the
action MOVE encapsulates moving left or right, until all areas reached by only
moving left or right have been found.

The breadth-first search process simulates one action at a time, and for each
level location reached by the character the simulator checks a data structure
for that location to see if the same (or shorter) sequence of actions has already
reached that location. If not, the sequence is new for this co-ordinate, and so it
adds a new node to the search space to be explored. Because this node is one move
longer than the node that was just explored, the breadth-first search will only
expand it after it has finished searching all the nodes with shorter sequences. In
this way, we find the shortest sequence that reaches the exit. For the mechanics
and levels described in this paper, the actions used were MOVELEFT, MOVERIGHT,
JUMP, SPECIAL and NOTHING. NOTHING is an action used when simulating a fall.

When a sequence of moves that reaches the exit location has been found, it is
returned instantly (as this proves the TGM is usable, under the earlier definition).
The fitness of a mechanic in this instance is proportional to the amount of the
game world that the player was able to access before reaching the exit. This is
a good metric as it allows the system to avoid finding mechanics that are too
empowering (allowing the player to reach everywhere in the game world) or not
empowering enough (mechanics that, for instance, instantly teleport the player
to the exit location, which offer little flexibility for interesting level design).

Crossover, Mutation, and Evolutionary Parameters Mutation of a TGM
is performed by either randomly varying the modifier on the mechanic (e.g.
changing a Float’s modifier from Halve to InvertSign), or by changing the
TGM’s target field to another field from the same class within the game en-
gine. Specific mutations are selected randomly from all legal mutations for the
mechanic (if a type has only one modifier, for instance, it will not attempt to ran-
domly reassign the modifier as it will result in an identical mechanic). Crossover
of two mechanics uses uniform crossover where the two mechanics affect fields of
the same type. In the case that the two mechanics do not, mutation takes place
instead. 10% of the new population is comprised of newly-generated TGMs.

A standard run of Mechanic Miner maintains a population of 100 mechan-
ics, evolved for 15 generations. Simulation (for fitness evaluation) is limited to
ten discrete actions, such as MOVERIGHT, before the simulator stops under the
assumption that no solution can be found (the simplicity of the sample problem
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means that it is unlikely that solutions longer than ten moves will be found -
none found during experimentation took more than ten moves). These parame-
ters were all determined through experimentation with the system.

3 Mechanic-Led Level Design

Once a TGM has been identified by Mechanic Miner as potentially usable for the
candidate problem, we can use it as the basis for designing levels that specifically
require the use of that mechanic by players en route to finishing the level. This
section outlines the process of evolving level designs for specific mechanics.

Population Generation A level is described abstractly as a collection of geo-
metric shapes that prescribe the placement of impassable blocks, similar to the
system described in [9]. Each shape is either a Line or a Boz. Boxes may be
filled or outlines only, and Lines may be standard blocks, or spikes which kill the
player on contact. The generation of a level consists of the random placement
of shapes, with a limit on the minimum and maximum number of shapes a level
can contain. For the levels generated in this paper, they contain no fewer than
2 elements and no more than 20.

Simulation-Driven Fitness Evaluation In order to evaluate the level, we
simulate multiple attempts at solving it, using the simulation method outlined
in the previous section. The first simulation does not use any mechanics, to test
if the level can be completed without mechanic use at all. If this is the case,
the level receives a penalty to its fitness, as we want to end up with levels that
can only be solved using the new mechanic. The second simulation is a standard
simulation using the mechanic found by Mechanic Miner. A third simulation can
also be run in order to evaluate the difficulty of the level. In this simulation, the
mechanic is used but the amount of time processed between each simulation step
is increased. By increasing the time the game engine runs between actions by the
simulator, we can simulate the player having slower reaction times. This makes
it possible to approximately parameterise the difficulty of a level, by penalising
the fitness of levels that can be solved with long reaction times.

When the three simulations are complete, assuming the level was not com-
pletable without mechanic use, the fitness is scored as follows: first, the length
of the shortest successful trace is compared to the target trace length, TTL.
We assume that longer traces, implying more complex chains of action, imply a
harder puzzle to solve (since we are agnostic to the mechanic being designed for,
this seems a reasonable assumption). Levels whose shortest trace is closer to the
target trace length receive a higher fitness. This accounts for half of the total
fitness score, normalised between 0 and 0.5, where 0.5 represents a level whose
shortest trace is as long as the target trace length. We also compare the number
of times the mechanic was used with a target mechanic use variable, TM U, using
the logic that frequent use of the mechanic implies a complex solution. This is
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also normalised between 0 and 0.5. The variables TTL and TTM allow us to
adjust both the overall complexity of the level’s solution, as well as the ratio of
mechanic use to other actions.

Crossover, Mutation, and Evolutionary Parameters Mutating a level
involves the random replacement of abstract level elements with new elements,
or the adjustment of parameters such as the length of the lines and box sides,
or their starting co-ordinates. We employ uniform crossover by selecting a point
in the level grid, and performing crossover of any level elements whose starting
co-ordinate lies before that point on the grid. Parameters vary depending on
the desired difficulty of the level being designed, which is adjusted by the user
through the target trace length and other parameters described in the previous
section. A typical run maintains a population of 100 levels, run for 15 generations,
with a target mechanic use of 2 and a target trace length of 6. The standard
target reaction time is a step of 64ms, with a slower reaction time of 256ms.

4 Results and Evaluation

This section includes three game mechanics, and three levels designed for each,
which require the use of the associated mechanic in order to be solved. The
player starts in the ‘S’ position and must reach the exit, marked ‘X’. Red tiles
kill the player, while black squares are solid ground.

4.1 Mechanic - Gravity Inversion

Fig. 2. Gravity inversion mechanic: INVERTSIGN player.acceleration.y;

In Flixel, setting an object’s acceleration field is a way to simulate gravity, so
a typical platform game normally sets the acceleration.y field to a positive
integer. Multiplying this value by -1 has the effect of inverting gravity. Figure 2
shows three sample levels.
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Fig. 3. Teleportation mechanic: HALVE player.y

4.2 Mechanic - ‘Teleportation’

Halving (doubling, if activated again) the player’s y co-ordinate allows for tele-
portation around the game world. This mechanic is unusual, as the classic mental
model of a platform game does not match up to the co-ordinate model the game
engine uses. Here, (0,0) refers to the top-left corner of the screen. Halving the
distance between the player’s position and the ceiling has no natural analogue
in real-world physics. This makes the mechanic technically usable, but confusing
to the player. Figure 3 shows three sample levels.

4.3 Mechanic - ‘Bounce’

Fig. 4. Bounce mechanic: ADD 1 player.elasticity;

Elasticity affects how an object interacts with the game’s physics engine. Elas-
ticity is normally set to 0; any positive number will cause the player to bounce
when it collides with things. This mechanic allows the player to become "bouncy’
on demand, gaining momentum to bounce over larger gaps or to greater heights.
Figure 4 shows three sample levels.

4.4 Pilot Study

We performed a small pilot study to gain insight into how some of the mechanics
and levels generated would be received by human players. 7 participants with a
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variety of experience with videogames took part in the study, which consisted of
twelve levels split into sets of three sharing a common mechanic. The levels were
designed with variable evolutionary parameters; in particular, we attempted to
present progressively harder levels to the participants by increasing parameters
such as overall solution length and reflex requirements. The mechanics presented
to the player were those described above, and a fourth mechanic that allowed
the player to halve the effect of gravity. The participants were not told how the
mechanics worked, beyond being told they had a special ability they could use.

When asked to describe how they thought the mechanics worked, all five par-
ticipants failed to describe the teleportation mechanic accurately, and all rated
it as unenjoyable. This supports our belief that some mechanics invented by
Mechanic Miner in its current form are confusing for players, because they may
refer to elements of the game code that are not in the player’s mental model of
how the game world works. By contrast, all of the participants rated the gravity
inversion mechanic highly, with the hardest level of the set described as ”impres-
sive” and ”fun” by two of the participants. Comprehension of a mechanic seems
understandably integral to a player’s enjoyment of using it, and the feedback
from the study raises questions as to whether pure utility may be an effective
evaluation criteria for a reflection-driven system. Participants were also asked to
rank the levels in order of perceived difficulty for each set of three levels. From
the responses received, it seems that our metrics (such as the number of times a
mechanic must be used in a solution) model difficulty well for some mechanics,
but poorly for others - participants tended to agree on which levels were harder
than others, but in the case of mechanics such as bouncing, it did not match
up to our intended difficulty ordering. This may imply that different mechanics
require different metrics, as some may be suited to reaction challenges, while
others may be about ordering of actions or puzzle solving.

The study has informed the design of a larger survey that will focus on a
subset of mechanics. We hope this will provide more evidence for our hypotheses.

5 Related Work

Our related work covers both ruleset and mechanic invention. A common ap-
proach is to select mechanics from an annotated database. The system described
in [3] uses a list of known mechanics and game content, associated with words,
and uses WordNet to connect input strings to words attached to known game
content. This allows for the verb shoot to connect to mechanics where the player
controls a crosshair shooting at objects, for example. The work in [4] uses smaller
mechanical pieces which the authors call micro-rhetorics (see [5]). The Game-
O-Matic [4] takes sets of these micro-rhetorics and matches them with a human-
specified network of entity relationships. In one example in the paper, the re-
lationship dog meeds food is expressed through two objects labelled ‘dog’ and
‘food’, with the player being able to control the dog, tasked with gathering food.

These annotated-database approaches work well where a human designer is
able to construct a database of known concepts beforehand, but this limits the
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autonomy of the system, as well as its ability to surprise us through novel out-
put. This makes it a promising direction for mixed-initiative tasks. However, we
are interested in building an autonomous game designer, from a Computational
Creativity perspective [6], and this approach is less suited to our interests.

The other main approach to mechanic design is a grammar-based constructive
approach that uses templates, into which small sub-mechanic components are
inserted to construct high-level rules [7, 8]. Here, rule templates describe abstract
notions of mechanics (such as an event where two objects collide and effects are
applied to them) and then abstract notions of smaller objects/events/effects that
are in common videogame vocabulary (game objects such as the player, moving
entities, or the game level wall; sub-events such as an object being killed, or
teleported to a new location). This allows for novel composite mechanics to be
constructed, but the essential elements of the rules still direct the system towards
rediscovering known concepts or slightly elaborating on them. The need for a
technique that is not dependent on prior definitions is still evident.

6 Conclusions and Future Work

In this paper we introduced Mechanic Miner, an evolutionary system that gener-
ates new game mechanics through Reflection and then validates their usefulness
by simulating game playouts. We also showed how the same techniques can be
used to design levels that can only be solved using the mechanics invented. Me-
chanic Miner represents a novel method for both discovering potential game
mechanics and exploiting them through level design, without knowing anything
about the game engine or the mechanics found during the search. We have found
the system to be capable of producing mechanics unexpected to us (such as the
mechanic in section 4.3) as well as discovering mechanics similar to those used
by human game designers ([11] uses a mechanic similar to 4.1).

The simulation-driven level design system also surprised us by discovering
exploits within the game code we had supplied it. The sample game includes
a check that the player is touching the floor before allowing them to jump.
Mechanic Miner found that by using a teleportation mechanic it could teleport
inside a solid wall, which Flixel registers as the same as touching the floor,
effectively allowing the player to ‘wall jump’. Exploiting game engines in such a
way is common in certain game communities, and integral to competitive ‘speed
runs’ of games, where players try to find new ways to shortcut or break the rules
of a game. That Mechanic Miner was able to do this, without any anticipation
from the system’s authors, is an exciting indication that the system may be able
to find more complex, emergent game mechanics in future.

Some of the areas suggested for possible future work include:

Game Object Synthesis Rich game mechanics often affect in-game objects
that are created as extensions of the game engine. For instance, some of the
mechanics found by Mechanic Miner affect the Player object, which extends
Flixel’s basic FlxSprite object. By allowing Mechanic Miner to create new types
of game object as part of its search process, and then find mechanics that exploit
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interactions between the new game objects and the game world, we open up more
interesting possibilities for discovery.

Richer Reflection and Constraint Generation Some mechanics only
make sense in the context of complementary vulnerability. Mechanic Miner dis-
covered the notion of gravity inversion, which is used in [11]. However, in [11] the
player is unable to jump. This simple adjustment allows for many new challenges
to be designed. Constraints are just one way that reflection could be leveraged
to create more intricate mechanics. Reflection can be used to call methods or
run arbitrary code at runtime, opening up the possibility for more complex,
multi-operation mechanics to be constructed beyond field modification.

Emergent Mechanics In some games, problems are presented to the player
that cannot be solved with a single mechanic, but can be completed using a
combination two. By modifying Mechanic Miner, we believe it can be used to
solve levels using multiple mechanics at a time, potentially discovering scenarios
where mechanics can combine to solve new types of problem.
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